Choose a news story, within last two years, about genetic or genomic technology.
DNP 810 Topic 1 Discussion Question One
Choose a news story, within last two years, about genetic or genomic technology. What is the issue presented? From the perspective of an RN or APRN, what are the ethical, cultural, religious, legal, fiscal, and societal implications of the issue? Explain. Support your rationale with a minimum of two scholarly sources.
Etymology[edit]
From the Greek ΓΕΝ[6] gen, “gene” (gamma, epsilon, nu, epsilon) meaning “become, create, creation, birth”, and subsequent variants: genealogy, genesis, genetics, genic, genomere, genotype, genus etc. While the word genome (from the German Genom, attributed
DNP 810 Topic 1 Discussion Question One
DNP 810 Topic 1 Discussion Question One
to Hans Winkler) was in use in English as early as 1926,[7] the term genomics was coined by Tom Roderick, a geneticist at the Jackson Laboratory (Bar Harbor, Maine), over beer at a meeting held in Maryland on the mapping of the human genome in 1986.[8]
Early sequencing efforts[edit]
Following Rosalind Franklin‘s confirmation of the helical structure of DNA, James D. Watson and Francis Crick‘s publication of the structure of DNA in 1953 and Fred Sanger‘s publication of the Amino acid sequence of insulin in 1955, nucleic acid sequencing became a major target of early molecular biologists.[9] In 1964, Robert W. Holley and colleagues published the first nucleic acid sequence ever determined, the ribonucleotide sequence of alanine transfer RNA.[10][11] Extending this work, Marshall Nirenberg and Philip Leder revealed the triplet nature of the genetic code and were able to determine the sequences of 54 out of 64 codons in their experiments.[12] In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.[13] Fiers’ group expanded on their MS2 coat protein work, determining the complete nucleotide-sequence of bacteriophage MS2-RNA (whose genome encodes just four genes in 3569 base pairs [bp]) and Simian virus 40 in 1976 and 1978, respectively.[14][15]
Click here to ORDER an A++ paper from our Verified MASTERS and DOCTORATE WRITERS: DNP 810 Topic 1 Discussion Question One
Frederick Sanger and Walter Gilbert shared half of the 1980 Nobel Prize in Chemistry for Independently developing methods for the sequencing of DNA.
In addition to his seminal work on the amino acid sequence of insulin, Frederick Sanger and his colleagues played a key role in the development of DNA sequencing techniques that enabled the establishment of comprehensive genome sequencing projects.[5] In 1975, he and Alan Coulson published a sequencing procedure using DNA polymerase with radiolabelled nucleotides that he called the Plus and Minus technique.[16][17] This involved two closely related methods that generated short oligonucleotides with defined 3′ termini. These could be fractionated by electrophoresis on a polyacrylamide gel (called polyacrylamide gel electrophoresis) and visualised using autoradiography. The procedure could sequence up to 80 nucleotides in one go and was a big improvement, but was still very laborious. Nevertheless, in 1977 his group was able to sequence most of the 5,386 nucleotides of the single-stranded bacteriophage φX174, completing the first fully sequenced DNA-based genome.[18] The refinement of the Plus and Minus method resulted in the chain-termination, or Sanger method (see below), which formed the basis of the techniques of DNA sequencing, genome mapping, data storage, and bioinformatic analysis most widely used in the following quarter-century of research.[19][20] In the same year Walter Gilbert and Allan Maxam of Harvard University independently developed the Maxam-Gilbert method (also known as the chemical method) of DNA sequencing, involving the preferential cleavage of DNA at known bases, a less efficient method.[21][22] For their groundbreaking work in the sequencing of nucleic acids, Gilbert and Sanger shared half the 1980 Nobel Prize in chemistry with Paul Berg (recombinant DNA).
Click here to ORDER an A++ paper from our MASTERS and DOCTORATE WRITERS: DNP 810 Topic 1 Discussion Question One